
Trust over IP (ToIP) Technology
Architecture Specification

Revision History

Public Review Draft 01 (PR1) — 14 November 2022

For the most recent version of this specification, please see this ToIP web page.

Editors

~ Daniel Bachenheimer (Accenture)
~ Wenjing Chu (Futurewei Technologies, Inc)
~

Darrell O' Donnel (Continuum Loop)
~ Andor Kesselman (Benri)
~ Antti Kettunen
~

Christine Martin (Continuum Loop)
~ Drummond Reed (Gen/Avast)
~ Jo Spencer

(460degrees / Sezoo)
~ Allan Thomson (Gen/Avast)

Contributors

~ Jacques Bikoundou
~ Tim Bouma (CIO Strategy Council)
~ Kevin Dean (GS1 Global

Office)
~ Judith Fleenor (Trust Over IP Foundation)
~ Sid Haniff (Datasoc)
~ Daniel

Hardman (Provenant)
~ Isaac Henderson
~ John Jordan (Province of British Columbia)
~

Vikas Malhotra (WOPLLI Technologies)
~ Sankarshan Mukhopadhyay (Dhiway Networks)

~ Sumabala Nair (IBM)
~ Vinod Panicker (Wipro)
~ Scott Perry (Schellman)
~ Vladimir

Simjanoski (Blokverse)
~ P. A. Subrahmanyam (CyberKnowledge)
~ Bart Suichies
~

Samuel Smith (ProSapien LLC)
~ Neil Thomson (QueryVision)
~ Alex Tweeddale (cheqd)

~ Mattia Zago (Monokee)
~ Vlad Zubenko (ETS)

Copyright: 2022 Trust Over IP Foundation

Table of Contents

1. Introduction

2. Terminology

3. Motivations

4. Audience, Purpose and Scope

5. Example Use Cases

https://trustoverip.org/our-work/technical-architecture/
https://www.linkedin.com/in/daniel-bachenheimer-2632202/
https://www.linkedin.com/in/wenjingchu
https://www.linkedin.com/in/darrellodonnell/?originalSubdomain=ca
https://www.linkedin.com/in/henosisknot/
https://www.linkedin.com/in/anttikettunen/?originalSubdomain=fi
https://www.linkedin.com/in/martch/?originalSubdomain=ca
https://www.linkedin.com/in/drummondreed/
https://www.linkedin.com/in/jospencer-1pg/?originalSubdomain=au
https://www.linkedin.com/in/url4allant/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/
http://localhost:6419/

6. Reference Architecture Overview

6.1 Design Goals

6.2 The Four Layer Pattern

6.3 High-Level System Architecture

6.4 ToIP Identifiers

7. Endpoint Systems and the Layered Stack

7.1 Endpoint Systems

7.2 Layer 1: Trust Support

7.3 Layer 2: Trust Spanning

7.4 Layer 3: Trust Tasks

7.5 Layer 4: Trust Applications

8. The ToIP Trust Spanning Protocol

8.1 Overview

8.2 Identifiers

8.3 Messages

8.4 Routing

8.5 Interface to Layer 1

9. Intermediary Systems

10. Supporting Systems

10.1 Overview

10.2 Example 1 - A DID Method

10.3 Example 2 - A KERI Witness

10.4 Generalization

11. Endpoint System Interoperability

11.1 Interoperability between Endpoint Systems Using Decentralized Identifiers

11.2 Interoperability between Endpoints Using Other Verifiable Identifiers

12. Integration with the ToIP Governance Stack

13. References

About the ToIP Foundation

Appendix A: Consolidated Requirements

Appendix B: Consolidated Views of the ToIP Technology Stack

Functional Hourglass View

Sphere-of-Influence View

Interaction Pattern View

Appendix C: Mapping of Existing Technologies into the ToIP Technology Stack

1. Introduction

The mission of the Trust over IP (ToIP) Foundation is to define an overall architecture for

Internet-scale digital trust that combines cryptographic assurance at the machine layers

(technology) with human accountability at the business, legal, and social layers

(governance). Together these two halves form a complete four-layer architecture for

decentralized digital trust infrastructure known as the ToIP stack. Figure 1 is a

conceptual diagram of this stack:

Figure 1: Conceptual diagram of the ToIP stack

This document is the normative specification for the high-level architecture of the ToIP

technology stack (the left half of Figure 1). It is a deliverable of the Technology Stack

Working Group at the ToIP Foundation. It is recommended to read this document in

conjunction with these three other documents from the ToIP Foundation in the following

order:

1. Introduction to ToIP is our white paper that provides an overall introduction to the

emergence of decentralized digital trust infrastructure. It explains the origin and

basic structure of the ToIP stack together with the mission and activities of the ToIP

Foundation.

https://www.trustoverip.org/
https://trustoverip.github.io/toip/glossary#toip-stack
http://localhost:6419/images/ToIPDualStack.png
https://wiki.trustoverip.org/display/HOME/Technology+Stack+Working+Group
https://www.trustoverip.org/wp-content/uploads/Introduction-to-ToIP-V2.0-2021-11-17.pdf

2. Evolution of the ToIP Stack is a companion document to this specification that

explains the overall process the ToIP Foundation is following in the development of

the ToIP stack. It is recommended for anyone seeking to understand how the work of

the ToIP Foundation relates to that of adjacent non-profit organizations such as the

Decentralized Identity Foundation, the OpenID Foundation, the Open Identity

Exchange, and others including established SDOs such as W3C, IETF, ISO, etc. See

Appendix B for more.

3. Design Principles for the ToIP Stack is the immediate predecessor to this

specification (see the development tracks described in Section 4). It enumerates the

set of design principles informing, guiding, and constraining the design of the ToIP

stack. We especially recommend this document for a complete understanding of

this specification.

As with all ToIP deliverables, the ToIP Foundation invites your feedback and suggestions.

Please contact us via the ToIP Foundation website.

2. Terminology

In this document, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL

NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL", when

appearing in ALL CAPITALS, are to be interpreted as described in IETF RFC 2119.

All other defined terms are linked to their definitions in the applicable ToIP glossary

following the process defined by the ToIP Concepts and Terminology Working

Group(CTWG). The glossaries cited in this specification include:

The ToIP Core Glossary

The CTWG Glossary

The TSWG Glossary

The eSSIF-Lab Glossary

NOTE: Work on these glossaries is ongoing with the aim of being complete for the

second public review draft (PR2).

Terms that especially vital to this specification are also explained inline.

3. Motivations

This section is informative.

https://docs.google.com/document/d/1RKbHtqTRxlefkTTo4AgKW-Mwz631Z7Ufn0-oKqi9XxY/edit
https://www.trustoverip.org/wp-content/uploads/Design-Principles-for-the-ToIP-Stack-V1.0-2022-01-17.pdf
https://www.trustoverip.org/
https://datatracker.ietf.org/doc/html/rfc2119
https://trustoverip.github.io/ctwg/glossary#glossary
https://wiki.trustoverip.org/pages/viewpage.action?pageId=65700
https://trustoverip.github.io/toip/glossary
https://trustoverip.github.io/ctwg/glossary
https://trustoverip.github.io/tswg/glossary
https://trustoverip.github.io/essiflab/glossary

The goal of this specification is to define the overall requirements for a layered system

architecture that enables interoperable trust relationships between any set of endpoints

on the Internet. This is directly analogous to the role the TCP/IP stack plays in enabling

interoperable data exchange between any set of endpoints on the Internet. The design

patterns applicable to solving these interoperability challenges, and the motivations for

each, are detailed at length in Design Principles for the ToIP Stack.

Whether from the perspective of an implementer, a customer, or a policymaker, there are

many benefits to a well-defined layered architecture:

Engineering stability. The abstraction of bundling technologies and policies within

distinct layers isolates changes within a layer from interactions and dependencies

between layers. The result is a framework more resilient to structural changes than

when the layers are not separated.

Wide adoption through a principled trust spanning layer. The TCP/IP stack

features a simple minimalistic protocol (the Internet Protocol) as a universal

spanning layer. More diverse task-specific protocols are built on top of this spanning

layer (e.g., TCP for connection-oriented, UDP for connectionless). In the case of

ToIP, a trust spanning layer based on a well-grounded set of design principles can

maximize adoption, interoperability and reachability.

Reliability. A well-defined architecture enables the development of software

components and applications that can be trusted to act in predictable, reliable ways

—and that can expect other components and applications to do the same.

Interoperability and vendor independence. As with the TCP/IP stack, the Bluetooth

stack, the NFC stack, or other protocol stacks, implementations from multiple

vendors can and should be interoperable, and customers should be able to switch

between them while maintaining standardized functionality. In addition, whenever

practical, ToIP should leverage existing technologies provided they are consistent

with the ToIP design principles.

Development communities. A well-designed architecture stack helps spawn a

robust, diverse community of developers building solutions whose interoperability

depends on a core stack. More development attracts more innovation, more

innovation attracts more adoption, producing a network effect benefiting the entire

ecosystem.

Commoditization. Standardization of a stack for mass adoption commoditizes it,

reducing both the cost of implementation and the time to market. It also frees

vendors to focus on their proprietary differentiation in their service offerings.

https://trustoverip.org/permalink/Design-Principles-for-the-ToIP-Stack-V1.0-2022-11-17.pdf
https://en.wikipedia.org/wiki/Internet_Protocol
https://trustoverip.org/permalink/Design-Principles-for-the-ToIP-Stack-V1.0-2022-11-17.pdf

Public policy. A well-defined architecture with clear and concise terminology helps

policymakers and legal experts define coherent policies and regulations in a manner

that serves the needs of society without constraining technical innovation and

competition.

4. Audience, Purpose and Scope

This section is informative.

The audience for this specification is protocol designers, system architects, software

developers and product managers who wish to understand, influence, design, develop,

or implement interoperable decentralized digital trust infrastructure, services, or

applications.

The purpose of is specification is to define a reference architecture for the technology

side of the ToIP stack, including the functions and behaviors required for each of the four

layers and the functional and behavioral inter-dependencies between the layers:

What each layer must do.

What each layer should and may do.

What behaviors are expected to support interoperability.

What interactions each layer supports for other layers.

The goal of these architectural requirements is to inform subsequent development tracks

as summarized in Figure 2:

http://localhost:6419/images/StackDevTrack.png

Figure 2: The planned progression of development tracks for the ToIP Technology

Stack

For more information about the interrelationship and progression of these four

development tracks, please see Appendix B: Evolution of the ToIP Stack.

The scope of this specification is limited to the Technical Architecture Track above, i.e.,

to defining the normative architectural requirements needed to guide the Component

Specification Track. Success will be achieved if these requirements are sufficient to

produce the component specifications needed to implement the architecture and

prepare for the Interoperability Testing Track.

By focusing solely on the Technical Architecture Track, the following are explicitly out-of-

scope:

1. The definition of specific protocols or interfaces at each layer (these will be

produced in the Component Specifications Track).

2. The definition of specific interoperability profiles and test cases—including both

vertical and horizontal interoperability—that can be used for commercial-grade test

harnesses and testing labs (these will be produced in the Interoperability Testing

Track).

3. The definition of specific intermediary systems or supporting systems for any layer.

4. The definition of specific applications (and their user interfaces) that run on top of

the ToIP stack.

5. The definition of ToIP Governance Stack components such as trust frameworks or

governance frameworks for usage of the ToIP stack within specific digital trust

ecosystems.

NOTE: We do not expect all of these additional deliverables, especially the component

specifications, to be produced by the ToIP Technology Stack Working Group (or other

ToIP Working Groups). Some have already been produced—and others are in

development—by other standards development organizations (such as the

Decentralized Identity Foundation, W3C, IETF, ETSI, and ISO), independent governing

authorities, and independent developers.

NOTE: Due to the public policy implications, the ToIP Foundation is committed to

producing a companion document called ToIP Primer for Policymakers. This document

will guide policymakers, governing authorities, analysts, and other non-technical

audiences who need to deeply understand the purpose, uses, and implications of the

ToIP stack but do not need (or want) to dive into technical details.

5. Example Use Cases

This section is informative.

NOTE: Work on a set of example use cases illustrating the full breadth of usage of the

ToIP stack is underway in the ToIP Ecosystem Foundry Working Group. A summary table

of these use cases is planned to be included in the second public review draft (PR2).

6. Reference Architecture Overview

This section is informative.

6.1 Design Goals

A reference architecture of a complex system is an abstract framework consisting of a

list of functional subsystems together with the interfaces and protocols needed to define

the potential interactions and dependencies between these systems and/or external

systems. This reference architecture provides a logical articulation of these interfaces

and protocols which can then be translated into specific component specifications as

described in Figure 2.

Such a reference architecture is an exercise in design guided by a set of most significant

goals or principles. The overarching goals for the ToIP stack are twofold:

1. Define a general means of establishing trust between any two or more endpoint

systems,

2. Achieve universal interoperability among implementations.

These twin objectives led the ToIP Foundation to begin the work with the Design

Principles Track in Figure 2. In 2021, we developed a set of 17 Design Principles for the

ToIP Stack that are the basis for the design choices reflected in this specification. For the

full rationale behind each design principle, see Design Principles for the ToIP Stack.

With regard to the first design goal, establishing trust between parties requires that each

party develop confidence in the following properties of their relationship:

1. Authenticity: is the receiver of a communication able to verify that it originated from

the sender and has not been tampered with?

2. Confidentiality: is the contents of a communication protected so only authorized

parties have access?

[1]

https://wiki.trustoverip.org/display/HOME/Ecosystem+Foundry+Working+Group
https://www.trustoverip.org/wp-content/uploads/Design-Principles-for-the-ToIP-Stack-V1.0-2022-01-17.pdf
https://www.trustoverip.org/wp-content/uploads/Design-Principles-for-the-ToIP-Stack-V1.0-2022-01-17.pdf

3. Privacy: will the expectations of each party with respect to usage of shared

information be honored by the other parties?

Note that, in some trust relationships, confidentiality and privacy may be optional. Thus

our design goal with the ToIP stack is to achieve these three properties in the order

listed.

With regard to the second design goal, the ToIP reference architecture shares the same

goal of global scalability as the original Internet architecture. This involves several

intertwined considerations that overlap and reinforce each other as summarized by the

first four Design Principles for the ToIP Stack:

1. The End-to-End Principle

2. Connectivity Is Its Own Reward (Universal Interoperability)

3. The Hourglass Model

4. Decentralization

6.2 The Four Layer Pattern

Together these considerations lead to the general four-layer pattern of a protocol stack

summarized in Table 1.

Leyer # Generic Name ToIP Name

4 Applications Trust Applications

3 Supported protocols Trust Tasks

2 Spanning protocol Trust Spanning

1 Supporting protocols Trust Support

Table 1: The four layer pattern of large-scale protocol stacks

The best-known example of this four-layer pattern is the TCP/IP Internet protocol stack,

where any number of local area networking protocols at Layer 1 support a single

spanning layer protocol—the IP protocol—at Layer 2. This spanning layer in turn supports

multiple higher-level protocols at Layer 3 (e.g., TCP, UDP, HTTP, SMTP) designed to

meet the needs of many different applications at Layer 4.

[2]

https://www.trustoverip.org/wp-content/uploads/Design-Principles-for-the-ToIP-Stack-V1.0-2022-01-17.pdf

Much of the success of the Internet is attributed to this “hourglass” design in which the

spanning layer protocol maximizes interoperability by providing a common way for all the

higher level layers to communicate with all the lower level layers. This is why the design

of the trust spanning layer should be “as simple as possible but no simpler”. Figure 3

illustrates how this same hourglass design applies to the four ToIP layers.

Figure 3: How the four layer pattern fits the Hourglass Model

For additional overviews of how the ToIP technology stack implements the hourglass

model, see Appendix B.

6.3 High-Level System Architecture

The reference architecture of the ToIP stack provides a generalization of different

solutions to trust establishment over the Internet (or over other digital networks). This

section introduces the basic concepts, requirements and vocabulary with which to

consider: a) each functional component, b) the interface definitions and protocols

between these components, and c) interoperability of solutions built upon those

components. Subsequent sections will describe these components and protocols in

more detail.

At the highest level, ToIP interactions occur between three basic types of interacting

systems delineated by locus of control.

1. Endpoint Systems (often simply referred to as Endpoints): the ToIP systems

between which end-to-end trust is enabled following the End-to-End Principle. See

http://localhost:6419/images/HourGlass.png

Section 7.1.

2. Intermediary Systems may be used to assist in the interactions between the

Endpoint Systems. In that context, Intermediary systems are involved in the ToIP

Trust Spanning Protocol, and may themselves be Endpoint Systems. Intermediary

systems are not a dependency to Endpoint systems' trust relationship. See Section

9.

3. Supporting Systems are typically required to support the definition of Endpoints

and trust establishment between Endpoint Systems. Supporting Systems that

facilitate the authenticity and autonomy of an Endpoint System are termed

“Privileged” Supporting Systems, others are “Unprivileged” (see Section 10.1).

Supporting Systems are not directly involved in the ToIP Trust Spanning Protocol.

See Section 10.

The relationships between these systems is shown in Figure 4.

Figure 4: The three basic types of component systems in ToIP architecture

http://localhost:6419/images/ThreeTypesofSystems.png

The definition of each system is anchored to its defined (and agreed) locus of control,

i.e., who is able to exert control over the operation of that system. Clarity about the locus

of control and the dependencies between systems is critical as end-to-end trust is

constructed between any two Endpoint Systems. Each system, whether it is classified as

an Endpoint System, Intermediary System or Supporting System, defines its own locus of

control. An Endpoint System, for example, may be a tiny IoT device, a personal

smartphone, or a large capacity service hosted in a cloud. The terms such as 'local or

remote' or 'within, internal or outside' an Endpoint System should be understood as

being with respect to its locus of control rather than physical location. What matters to

the architecture is that it exhibits a consistent locus of control and, therefore, consistent

interaction protocols with respect to other systems.

These subsystems collaborate with each other through three types of consistent ToIP

interactions:

1. Endpoint System to Endpoint System

2. Endpoint System to Supporting Systems

3. Endpoint System to Intermediary Systems

ToIP Endpoint Systems and their interactions follow the 4-layer design pattern described

in Section 6.2. As we move up the stack (to Layers 3 and 4), the roles that may be played

by an Endpoint System are often given more context-specific names. For example, at

Layer 3, an Endpoint System involved in the Trust Task of exchanging verifiable

credentials may be classified as an “Issuer”, “Holder”, or “Verifier” in that specific

interaction context. These higher layer terms are specific to that context and must be

consistent with the abstract general terms used in this reference architecture.

Figure 5 shows a high level view of how these three basic types of component systems

might interact using the existing infrastructure of the Internet.

https://www.w3.org/TR/vc-data-model/

Figure 5: High level view of ToIP consistent system interactions

The normative requirements for each type of subsystem and interaction across the ToIP

layers are specified in the following sections.

6.4 ToIP Identifiers

Just as IP addresses are the heart of the Internet TCP/IP stack, ToIP identifiers are the

heart of the ToIP stack. Figure 6 illustrates the three basic types of ToIP identifiers.

http://localhost:6419/images/HighLevelView.png
http://localhost:6419/images/IdentifierTypes.png

Figure 6: The three classes of identifiers used with ToIP architecture

Design Principle #5 (Cryptographic Verifiability) states that “messages and data

structures exchanged between parties should be verifiable as authentic using standard

cryptographic algorithms and protocols”. This requires that Endpoint Systems be able to

associate, discover and verify the cryptographic keys associated with a ToIP identifier.

This specification will refer to identifiers that meet this basic requirement of

cryptographic verifiability as verifiable identifiers (VIDs).

VIDs divide into two subclasses: those that rely on centralized registries, and those that

do not. An example of the former is the authority portion of an HTTPS URL. It relies on a

centralized DNS registry for resolution, but that domain name is associated with an

X.509 digital certificate that provides a cryptographic binding with a public key.

VIDs that do not require a centralized registry are known as decentralized identifiers or

DIDs. DIDs fulfill the requirement of Design Principle #4 (Decentralization by Design and

Default). The W3C has established a global standard for the syntax and resolution format

of DIDs.

DIDs can be further subdivided into two classes: those whose verification requires the

use of an external system outside of the autonomy boundary of the DID controller, and

those whose verification can be accomplished using cryptography alone. The latter are

often called self-certifying identifiers. Since self-certifying identifiers enable an Endpoint

System to be completely autonomous, this specification will refer to this class of

identifiers as autonomous identifiers (AIDs). A KERI autonomic identifier is an example of

an AID.

Requirements for ToIP identifiers are covered in Section 8.2.

7. Endpoint Systems and the Layered
Stack

This section is normative.

7.1 Endpoint Systems

https://trustoverip.org/permalink/Design-Principles-for-the-ToIP-Stack-V1.0-2022-11-17.pdf
https://trustoverip.org/permalink/Design-Principles-for-the-ToIP-Stack-V1.0-2022-11-17.pdf
https://www.w3.org/TR/did-core/
https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/KERI_WP_2.x.web.pdf

Endpoint Systems represent ToIP systems that are under a party’s direct control. An

Endpoint System's boundary is delineated by its locus of control. A party means the

entity that is evaluating, relying on, and benefiting from a trust relationship. In other

words, a party is any user of the system without regard to their role in the system. This

represents a contrast with the traditional identity and access management (IAM) distinct

roles of a user who is making trust assertions and a relying party who is relying on those

assertions to make a trust decision. In a ToIP system, Endpoint Systems have a

symmetric peer-to-peer trust relationship in Layer 2 — the trust spanning layer.

Endpoint Systems are autonomous in the sense that a party’s locus of control is the

whole Endpoint System by definition. This means a potential compromise of other

Endpoint Systems, Intermediary Systems, or Supporting Systems will not directly

compromise the integrity of a given Endpoint System. Each Endpoint System can be

simple or very complex, i.e., it may have many further divided functions and/or services,

however in this reference architecture, we shall consider the abstract Endpoint System

autonomous. Implementers SHOULD ensure autonomy for Endpoint Systems [REQ A.1]

Common examples of Endpoint Systems include:

A mobile phone owned and administered by an individual.

A merchant’s web server (on-premise or in the cloud), administered by the

merchant.

A financial institution’s distributed digital services, including certain online services

for trust functions, administered by the financial institution.

An IoT pollution sensor device owned and administered by a city.

Befitting Design Principle #1 (The End-to-End Principle), Endpoint Systems are the

ultimate targets of the requirements of ToIP architecture. They are likely to be much

larger in number — by several magnitudes — compared to Intermediary or Supporting

Systems. They implement most of the functions in the ToIP architecture and represent

the biggest challenge for interoperability and scalability.

https://trustoverip.org/permalink/Design-Principles-for-the-ToIP-Stack-V1.0-2022-11-17.pdf

Figure 7: Endpoint System

Within an Endpoint System's locus of control, a higher layer uses the functions of a lower

layer through an Interface. In ToIP architecture, functions within an Endpoint System are

decomposed into layers in a vertical stack where layer boundaries are defined by their

corresponding Interfaces. In a ToIP Endpoint System, the higher layers of the ToIP

protocol stack MUST communicate with the lower layers via defined interfaces. [REQ

A.2]

In addition to the internal layer interfaces implemented by hardware and software

resources within the Endpoint System’s locus of control, an Endpoint System may also

rely on the services of other Supporting Systems that are located outside of the Endpoint

System's locus of control but accessible through the Internet to perform their functions.

This type of interaction requires a defined Protocol.

The distinction between an Interface and a Protocol is whether the systems

communicating over the protocol represent different loci of control. For example, simply

distributing the functions within a particular layer over the Internet — such as having

some of the functions performed using cloud computing or web services—does not

necessarily require a defined protocol if all of the functions are under the same locus of

control. However an agreed protocol may be necessary if the communicating systems

are under different loci of control. What is essential is delineating who has control over

what in order to reason about trust relationships.

The four layer stack within an Endpoint System is defined in the following sections.

http://localhost:6419/images/EndpointSystem.png

7.2 Layer 1: Trust Support

If a ToIP Endpoint System includes Trust Support Functions within its locus of control,

then those functions MUST be included at Layer 1 of the Endpoint System. [REQ L1.1]

The exact nature of the Trust Support Functions required by any particular Endpoint

System may vary significantly depending on the Endpoint System’s physical

manifestation and numerous other design goals (e.g. cost, location, convenience, power

usage, reliability and so on). For example the Trust Support Functions required for a full-

featured smartphone vs. a cloud server vs. an IoT thermostat may be very different.

Examples of Trust Support Functions designed to specifically support machine-to-

machine trust (aka cryptographic trust or technical trust):

Cryptographic hardware modules capable of generating good quality cryptographic

key materials.

Sufficiently secure storage of secrets and cryptographic materials.

Sufficiently secure computing environment.

Sufficient communication functions for the intended deployment environment.

NOTE: while this specification generally assumes the Internet as the common networking

environment, Internet support is not strictly required. The ToIP stack may be

implemented over any communication medium capable of supporting the

communication functions.

Examples of Trust Support Functions designed to specifically support human-to-human

trust (aka business trust or legal trust) include:

Identity binding mechanisms that associate a natural person to the Endpoint System

itself, or to data artifacts on the Endpoint System such as identity claims or verifiable

credentials. One of the strongest identity binding mechanisms is biometrics —

physiological or behavioral characteristics that identify the individual (facial

recognition, fingerprint readers, voice recognition, palm recognition, and so on).

Layer 1 would provide the hardware and software support for registering, storing,

and processing biometric primitives.

Hardware-based trust attestation systems, such as those incorporated within

Trusted Platform Modules, and other confidential computing systems that can

provide legally valid evidence of the security characteristics of a Layer 1 component.

Diversity of implementations of Layer 1 Trust Support Functions is intentional and a key

goal of the ToIP stack design.

https://trustedcomputinggroup.org/resource/trusted-platform-module-tpm-summary/

NOTE: For functional, performance, security, or other reasons, a Layer 1 Trust Support

Function implementation may use a remote service outside its locus of control, e.g., a

distributed ledger, distributed directory, distributed database, distributed file system, or

distributed hash table. These systems are Supporting Systems to the Layer 1

implementation; they are not part of Layer 1 itself. See Section 10.1.

7.3 Layer 2: Trust Spanning

Layer 2 is the trust spanning layer of the ToIP stack. In keeping with Design Principle #3

(The Hourglass Model), this means there is only one requirement for Layer 2: A ToIP

Endpoint System MUST communicate with another ToIP Endpoint System using the ToIP

Trust Spanning Protocol. [REQ L2.1] No other functions are required.

The requirements for the ToIP Trust Spanning Protocol are defined in Section 8.

7.4 Layer 3: Trust Tasks

Many applications may require more complex trust-building functions than the minimal

set offered directly by the ToIP Trust Spanning Protocol. When one of these functions is

reusable across multiple contexts that are separated in time, space, or perspective, we

call it a Trust Task. Trust Tasks can be standardized as their own higher-level protocols at

Layer 3 of the ToIP stack.

A Layer 3 Trust Task Protocol MUST communicate either over the Layer 2 ToIP Trust

Spanning Protocol or over another Layer 3 Trust Task Protocol for all communications

related to trust establishment between Endpoint Systems. [REQ L3.1] This is directly

analogous to how TCP and UDP communicate over IP, and how HTTP communicates

over TCP. A Layer 3 Trust Task MAY use other protocols, but only for other purposes

(since short-circuiting Layer 2 when establishing trust with other Endpoint Systems

would undermine the trust guarantees of the ToIP stack). [REQ L3.2]

Note that because Confidentiality and Privacy are optional for the Layer 2 ToIP Trust

Spanning Protocol, the following requirement applies: A Layer 3 Trust Task Protocol

intended to communicate private data SHOULD support Confidentiality and Privacy.

[REQ L3.3]

There can be as many Trust Tasks Protocols as are needed by Layer 4 Trust Applications.

Some examples of Trust Tasks include:

Human authentication (as opposed to cryptographic authentication performed at

Layer 2), including biometric authentication

https://trustoverip.org/permalink/Design-Principles-for-the-ToIP-Stack-V1.0-2022-11-17.pdf

Exchanges of verifiable credentials (issue, request, offer, present, revoke)

Provisioning, updating, and verification of digital identities

Consent management

Requesting and signing of digital documents

Secure messaging

Secure data sharing

Digital payment or value exchange in any form

Digital auctions

Digital notaries

7.5 Layer 4: Trust Applications

Layer 4 is an open-ended application layer for any application that needs to engage in

trusted interactions. Layer 4 Trust Applications MAY use any number of Layer 3 Trust

Task Protocols. [REQ L4.1].

If a Layer 4 Trust Application does not use a Layer 3 Trust Task Protocol, it MUST

communicate with other Endpoint Systems using the Layer 2 Trust Spanning Protocol.

[REQ L4.2]

Layer 4 is the layer where humans “touch” the ToIP stack, so this is where Design

Principle #8 (Trust is Human) and #14 (Trust and Technology have a Reciprocal

Relationship) come into play. The human experience of digital trust is so critical that

Layer 4 has one more requirement: A Layer 4 Trust Application MUST support any ToIP-

defined Trust Affordances relevant to that application. [REQ 4.3]

8. The ToIP Trust Spanning Protocol

This section is normative.

8.1 Overview

This section describes the ToIP Trust Spanning Protocol required at Layer 2 to

communicate between any two Endpoint Systems. The overall protocol operation is

shown in Figure 8 below.

https://trustoverip.org/permalink/Design-Principles-for-the-ToIP-Stack-V1.0-2022-11-17.pdf
https://trustoverip.org/permalink/Design-Principles-for-the-ToIP-Stack-V1.0-2022-11-17.pdf

Figure 8: Overview of the ToIP Spanning Protocol

The main function of this protocol is to enable universal end-to-end communication

among all Endpoint Systems using trusted messages. This architectural choice is based

on the following considerations:

Existing Internet, local network, and mesh network infrastructure already supports

universal end-to-end communication through various types of transport

mechanisms.

This form of communication should be able to be implemented on all common types

of Endpoint Systems with minimum overhead and constraints.

Messaging-based communication is a least common denominator that provides

sufficient foundation for building more complex trust functions at higher layers.

This protocol is designed to be universal in the sense that all Endpoint Systems,

regardless of their form factors or implementation methods, can communicate with each

other using messages incorporating standard trust guarantees.

To achieve ubiquity, this protocol should be kept as simple as possible to ease

implementation challenges and allow maximum flexibility on all variants of Endpoint

Systems. Thus the requirements in the following sections are not only necessary but

sufficient. Strong preference must be given not to add additional functions to this

protocol unless they are universally beneficial. Strong preference must also be given to a

single common protocol specification for maximum any-to-any interoperability.

A view of the ToIP protocol stack on an Endpoint System is shown in Figure 9. The

component specification for the ToIP Trust Spanning Protocol therefore needs to specify:

http://localhost:6419/images/SpanningProtocol.png

1. How to generate and maintain identifiers with the properties described in Section

6.4.

2. The common message format that meets the design goals described in Section 6.1.

3. How lower layer transport protocol(s) can be used to deliver messages between

Endpoint Systems.

4. Any required support from ToIP Layer 1.

Figure 9: A view of the ToIP protocol stack on an Endpoint System

The following sections enumerate the requirements in each of these four areas.

8.2 Identifiers

A key difference between Internet architecture and ToIP architecture is that the former

only needed to identify the network endpoints of devices for data communications. The

solution was Internet Protocol (IP) addresses: a global addressing scheme for network

endpoints independent of any specific local area network.

By contrast, ToIP Layer 2 architecture needs to identify and route messages between the

entities participating in trust relationships. While this set of entities may include the

devices serving as Endpoint Systems, it extends beyond the network to include

identifiers for parties —people and organizations using the network to interact and

transact.

http://localhost:6419/images/StackOnEndpoint.png

In order to establish trust in ToIP identifiers (Section 6.4) regardless of the type of entity

to which they are bound, they must meet the following requirements:

A ToIP identifier MUST be unique within the context in which it is used for

identification. [REQ L2.2] This means ToIP identifiers intended to be globally

resolvable need to be globally unique; identifiers intended to be locally resolvable

need to be locally unique.

A ToIP identifier MUST be a verifiable identifier, i.e., verifiably bound to at least one

set of cryptographic keys discoverable via an associated discovery protocol. [REQ

L2.3]

A ToIP identifier SHOULD be a decentralized identifier, i.e., a verifiable identifier that

does not require registration with a centralized authority. [REQ L2.4]

A ToIP identifier SHOULD be an autonomous identifier, i.e., a decentralized identifier

that is self-certifying and fully portable. [REQ L2.5]

A ToIP identifier SHOULD support rotation of the associated cryptographic keys for

the lifetime of the identifier. [REQ L2.6]

A ToIP identifier MAY also support rotation to an entirely different ToIP identifier that

can be cryptographically verified to be a synonym of the original ToIP identifier. [REQ

2.7]

A ToIP identifier SHOULD support the ability to: a) associate the identifier with the

network address of one or more ToIP Systems that can deliver to one or more

Endpoint Systems under the locus of control of the ToIP identifier controller, and b) if

desired by that controller, enable that association to be discoverable. [REC L2.8]

Special considerations apply when a ToIP identifier needs to be provably bound to a

specific party, i.e., a person or an organization. Proof of such a binding can be a critical

factor in establishing a desired level of assurance in the identity of that party. Such proof

can be accomplished using multiple mechanisms such as:

1. Proof of control of the cryptographic keys bound to the ToIP identifier.

2. Proof of control of one or more verifiable credentials describing the identified party.

3. Proof of one or more biometric primitives describing the identified party.

Such proofs may require support from one or more Layer 1 Trust Support Functions

within the Endpoint, and/or support of one or more Supporting Systems outside of the

Endpoint, and/or the additional invocation of one or more Layer 3 Trust Task Protocols.

These steps are out-of-scope for the Layer 2 Trust Spanning Protocol.

Different considerations apply when a ToIP identifier needs to be provably bound to a

digital resource, such as a file, photo, or video. This can be accomplished using ToIP

identifiers that serve as content-addressable identifiers or self-addressing identifiers

that are derived from a cryptographic hash of the subject resource. For example, see

ACDC.

8.3 Messages

Messages are the lingua franca of the ToIP Trust Spanning Protocol. To achieve the

design goals in Section 6.1, the following requirements must be met:

The ToIP Trust Spanning Protocol specification MUST define how to construct and

format messages that are cryptographically verifiable to have the following four

properties:

Authenticity: the message was sent from a sender who has control over the ToIP

identifier.

Integrity: the contents of the message transmitted by the sender are received by the

recipient without modification.

Confidentiality: the contents of the message are only accessible by authorized

parties.

Privacy: the contents of the message are bound to conditions of usage agreed to by

the parties. [REC L2.9]

In a ToIP Endpoint System, an implementation of the ToIP Trust Spanning Protocol MUST

support authenticity and integrity. [REQ L2.10]

In a ToIP Endpoint System, an implementation of the ToIP Trust Spanning Protocol MAY

support confidentiality and privacy. [REQ L2.11]

The ToIP Trust Spanning Protocol MUST enable the composition of higher-level Trust

Tasks (such features as co-protocols). [REQ 2.12] Examples of such features include

discovery, threading, timeouts, ACKs, and attachments. However this must be balanced

with the requirement to only add additional functions to this protocol if they are

universally beneficial.

The ToIP Trust Spanning Protocol MUST support extensible message schema. [REQ

2.13] This enables different Trust Task protocols to be constructed without changing the

base format.

8.4 Routing

https://trustoverip.github.io/tswg-acdc-specification/draft-ssmith-acdc.html

Routing of a message from a sender to a receiver proceeds in three steps as shown in

Figure 8:

1. Address resolution takes the ToIP identifier of the receiver and resolves it to: a) the

network address of an Endpoint System for the receiver that supports the desired

Layer 1 transport mechanism, and b) the associated cryptographic keys. For

example, if the ToIP identifier is a DID and the desired transport is HTTP, then a DID

resolver resolves the DID following the associated DID method to retrieve the DID

document. It then selects: a) the service type associated with the ToIP Trust

Spanning Protocol and extracts an HTTP URL to which a connection can be made to

deliver the message to the other Endpoint System, and b) the required

cryptographic keys.

2. Transport is the Layer 1 mechanism to send the message to the Endpoint System of

the receiver or to an Intermediary System which can eventually deliver the message.

In the above example, HTTP is the transport. Over the Internet, any transport layer

protocol may be a suitable transport. Other contexts may use other transports, e.g.

Bluetooth, QR code, or a publish-subscribe messaging system.

3. Delivery is the final step of delivering the message to Layer 2 of the receiver’s

Endpoint System. This step may include a sub-step for an Intermediary System

(Section 9) to deliver the message to the Endpoint System, and a second sub-step

for the Endpoint System’s Layer 1 transport to deliver the message to the Layer 2

interface.

These steps lead to the following requirements:

The ToIP Trust Spanning Protocol MUST support resolution of ToIP identifiers to: a) the

network addresses of receiving Endpoint Systems, and b) any required cryptographic

keys. [REC 2.14]

The ToIP Trust Spanning Protocol MUST support transport of messages via ToIP Layer 1

interfaces. [REC 2.15]

The ToIP Trust Spanning Protocol MUST support delivery of messages to the Layer 2

interface of the Endpoint System of the ultimate receiver of the message. [REC 2.16]

The ToIP Trust Spanning Protocol MUST support the option to deliver messages via

Intermediary Systems. [REC 2.17]

The ToIP Trust Spanning Protocol MUST support confidentiality with regard to the

metadata required for message routing. [REC 2.18]

8.5 Interface to Layer 1

Given these requirements for the ToIP Trust Spanning Protocol at Layer 2, the Trust

Support Function interfaces at Layer 1 should only need to include the following. Note

that Layer 3 Trust Tasks or Layer 4 Trust Applications may also need to call these

interfaces directly.

1. Key Management System (KMS) is the interface for generating cryptographic

quality keys, random numbers, or other values required by the cryptographic

primitives used by the protocol.

2. Secure storage is the interface through which Layer 2 can create, read, write, and

delete confidential or secret data.

3. Transport consists of one primitive via which the sender’s Layer 2 implementation

can submit a message for transmission and another primitive through which the

receiver’s Layer 1 implementation can deliver a message up to Layer 2.

4. User binding is the interface via which a Layer 2 implementation can request and

verify a biometric or other authentication information from a user.

9. Intermediary Systems

This section is normative.

Intermediary Systems are mediators for facilitating the ToIP Trust Spanning Protocol.

Since the Internet itself is routable as long as a ToIP identifier can be resolved to a

unique IP address, Intermediary Systems are not absolutely required. However they can

be very beneficial in other aspects.

Examples of useful Intermediary Systems include:

Store and forward intermediaries. Some Endpoint Systems are not always

connected to the Internet (e.g. smartphones). As with email, effective

communication between an Endpoint System and a smartphone or similar device

could use an Intermediary System to receive and store the messages while the

device is not connected. Messages are subsequently delivered to the eventual

receiver when the device becomes connected again.

Multi-device intermediaries. Individuals who use multiple computing devices (e.g.,

smartphone, laptop, smart watch, smart car, etc.) may choose to use an

intermediary to simplify configuration and management of these devices as well as

routing of messages to the appropriate device.

Anonymizing intermediaries. When confidentiality is desired in the routing of

messages, intermediaries designed for this purpose can obfusticate the message

routing path.

Auditing intermediaries. When auditing of message traffic is required for regulatory

or compliance reasons, intermediaries designed for this purpose can maintain the

necessary audit logs.

Intermediary Systems differ from Supporting Systems because they reside between

Endpoint Systems and are visible to the Endpoint Systems.

Figure 10: The role of Intermediary Systems

In Figure 10, end-to-end communication between Endpoint Systems A and B are routed

through Intermediary Systems X and Y. In this case, all systems implement the Layer 2

protocol as described in Section 8. Routing uses “nested envelopes” as follows:

1. Endpoint System A prepares a message for Endpoint System B and puts it in an

inner message envelope addressed to Endpoint System B.

2. Endpoint System A places the inner message envelope inside an outer message

envelope addressed to Intermediary System X.

3. Endpoint System A delivers the outer message envelope to Intermediary System X.

4. Intermediary System X removes the outer message envelope and replaces it with a

new outer message envelope addressed to the next hop: Intermediary System Y.

5. Intermediary System X delivers the new outer message envelope to Intermediary

System Y.

6. Intermediary System Y removes the outer message envelope.

7. Intermediary System Y delivers the inner message envelope to Endpoint System B.

This pattern casts one requirement for the use of Intermediary Systems:

A ToIP Intermediary System SHOULD be able to perform the functions of a ToIP Endpoint

System for the purpose of routing enveloped messages using the ToIP Trust Spanning

Protocol. [REC A.3]

http://localhost:6419/images/IntermediarySystems.png

10. Supporting Systems

This section is normative.

10.1 Overview

An Endpoint System may utilize services from any number of Supporting Systems, either

privileged or unprivileged, over the Internet or other networks.

Privileged Supporting Systems are integral to the dependent Endpoint System’s

autonomy and authenticity. A privileged Supporting System must implement

strongly qualified trust mechanisms in order to play this role. Such trust mechanisms

can be a combination of technology (e.g. algorithmic) and governance policies (see

Section 12). For example, a blockchain is a privileged supporting system for a DID

method whose root of trust is the blockchain.

Unprivileged Supporting Systems are Supporting Systems that are not required to

support an Endpoint System’s autonomy and authenticity. For example, a website

that serves as a non-exclusive convenient discovery (e.g. advertising or search)

mechanism for public DIDs is unprivileged.

Each type of Supporting System may have a service access protocol standardized for

the type of service it offers. There may be many such services with many different

protocols. One Endpoint System may utilize one set of Supporting Systems while another

Endpoint System may use a different set of Supporting Systems. This difference in the

types of Supporting Systems used does not impede the two Endpoint Systems in

interoperating through the Layer 2 ToIP Trust Spanning Protocol. Therefore,

standardization across different services is not required.

An example of a common protocol stack for this purpose is a defined Web Service

running on top of HTTPS. However, many types of protocols may be used for different

Supporting Systems.

The ToIP protocol stack in an Endpoint System MAY use the services of a Supporting

System at any layer. [REC A.4] Such design decisions can be made layer by layer to

optimize the functions performed in each layer.

The following sections illustrated the layered interaction between Endpoint Systems and

Supporting Systems using examples of known implementations.

10.2 Example 1 - A DID Method

A DID Method may be implemented based on a distributed ledger, e.g. Hyperledger Indy.

An Endpoint System, in this example, may be implemented using a Hyperledger Aries

agent software module running on either a mobile device or a cloud platform. The Indy

ledger is a Privileged Supporting System and the Aries agent implements layer 2 and

layer 3 of the Endpoint System stack. Such a design pattern is illustrated in Figure 11.

Figure 11: An example of Hyperledger Indy as a Supporting System

A Layer 2 implementation must implement both DID resolution and the ToIP Trust

Spanning Protocol. To implement DID resolution in this example, the Aries agent uses a

local service (i.e. within its locus of control), i.e. a digital wallet, which relies on,

eventually, a KMS function and a secure storage function within the Endpoint System. It

also uses a remote service (i.e. outside of its locus of control) — the Indy blockchain —

via web service APIs built on top of HTTPS and other web protocols. This remote service

protocol consists of three components in the case of Aries-Indy: pool API, anoncred API,

and payment API. The web service eventually relies on the Internet Protocol stack for

routing, transport and delivery. Collectively, it is a complete Endpoint System to

Supporting System Protocol that in this case runs over the web.

10.3 Example 2 - A KERI Witness

http://localhost:6419/images/IndyAriesExample.png

KERI offers another example in this design pattern. In KERI, the Endpoint System

identifier is either an AID or a did:keri method. A layer 2 implementation will need certain

key material and secure storage from the lower layer as well. In addition, it requires

additional services that are outside of the Endpoint System's locus of control boundary.

The KERI Witness Pool is an example of such a supporting service as shown in Figure 12.

Another example is KERI Watcher Pool.

These supporting services differ from local dependencies (e.g. secure storage) because

they are outside of an Endpoint System’s locus of control. The access protocol to such

supporting services is also different from the ToIP Trust Spanning Protocol as it is a

protocol between different types of parties and has a different protocol stack.

Figure 12: An example of a KERI witness as a Supporting System

10.4 Generalization

Figure 13 illustrates a generalization of the pattern in which Endpoint Systems and their

respective Support Systems interact. This figure makes it clear that the interoperability

between Endpoint Systems in each layer is orthogonal to the methods of interaction with

respective Supporting Systems.

https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/KERI_WP_2.x.web.pdf
https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/KERI_WP_2.x.web.pdf
https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/KERI_WP_2.x.web.pdf
http://localhost:6419/images/KERIExample.png

Figure 13: A generalization of how Endpoint Systems and Supporting Systems

interact

11. Endpoint System Interoperability

11.1 Interoperability between Endpoint Systems Using
Decentralized Identifiers

Section 6.4 states that “Endpoint Systems [need to] be able to associate, discover and

verify the cryptographic keys associated with a ToIP identifier”. This capability is

essential in order for two or more Endpoint Systems to be able to discover and connect

with each other over the ToIP Trust Spanning Protocol.

If an Endpoint System is identified with a publicly resolvable decentralized identifier

(DID) as defined in section 6.4, this is straightforward because a DID resolver can:

1. Resolve the DID to the authoritative DID document.

2. Extract the appropriate public key.

3. Extract the service endpoint URI for the ToIP Trust Spanning Protocol.

If an Endpoint System is identified with a private, pairwise DID — called a peer DID — the

discovery and exchange of a DID document needs to use an out-of-band interaction

(OOBI) protocol. Common examples include QR codes and custom-generated deep

links.

11.2 Interoperability between Endpoints Using Other
Verifiable Identifiers

http://localhost:6419/images/GeneralizedSupportingSystems.png

If an Endpoint System is not identified with a DID, but with some other kind of verifiable

identifier (VID) as defined in section 6.4, then a different approach must be used to

bootstrap communications using the ToIP Trust Spanning Protocol. This requires

enabling discovery and verification of:

1. The authoritative public key for the Endpoint System.

2. The authoritative service endpoint URI for communicating with the Endpoint System

over the ToIP Trust Spanning Protocol.

If the VID is an HTTPS URL, there are at least two solutions:

1. Conversion of the HTTPS URL into a did:web: identifier as described in the ToIP

X.509 PKD Interop page.

2. Issuance by a trusted issuer (such as a certification authority) of a verifiable

credential whose subject is the HTTPS URL and whose claims assert the

authoritative public key and ToIP Trust Spanning Protocol service endpoint URI.

We anticipate that integration of decentralized PKI and X.509 PKI will be a topic of

increasing interest and innovation.

12. Integration with the ToIP
Governance Stack

As explained in the Introduction, this specification, maintained by the ToIP Technology

Stack Working Group, is focused entirely on requirements for the ToIP Technology Stack.

A separate set of specifications, maintained by the ToIP Governance Stack Working

Group, defines the requirements for the ToIP Governance Stack. The first generation of

the ToIP Governance Architecture Specifications were published in January 2022 and are

summarized here.

Although the ToIP Governance Architecture Specifications consist largely of

recommendations about the structure and content of governance documents for ToIP-

based digital trust ecosystems, there are a very small but vital set of technical

requirements that are essential for “tying the two stacks together”.

In particular, section 3 of the ToIP Governance Architecture Specification V1.0 specifies a

set of identification requirements for ToIP-compatible governance frameworks. A high-

level summary:

1. The primary document for the governance framework MUST be assigned a DID and

be retrievable via a DID URL. This DID identifies the governance framework itself as

https://wiki.trustoverip.org/display/HOME/X.509+PKD+Interop
https://wiki.trustoverip.org/display/HOME/Technology+Stack+Working+Group
https://wiki.trustoverip.org/display/HOME/Governance+Stack+Working+Group
https://trustoverip.org/news/2022/02/01/the-toip-foundation-releases-its-first-official-governance-specifications/
https://trustoverip.org/permalink/ToIP-Governance-Architecture-Specification-V1.0-2022-12-21.pdf

a digital object, and the DID URL allows it to be viewed and verified by any party.

2. All other controlled documents in the governance framework MUST have DID URLs.

3. The DID URLs for all governance framework documents MUST be versioned as the

documents are versioned.

4. The governing authority, administering authority (if separate from the governing

authority), and all governed parties in the governance framework MUST be

identified with DIDs.

The use of persistent, discoverable, cryptographically verifiable identifiers for all parties

and documents governing a digital trust ecosystem makes it much easier to bind

technology to policy within a digital trust ecosystem. For example:

A verifiable credential issued within the ecosystem can include a claim asserting the

DID of the authoritative governance framework.

The credential can also include the DID of one or more trust registries where a

holder or verifier can verify that the DID of the credential issuer is authorized to

issue that particular type of credential under that governance framework.

A credential asserting certification under the governance framework can include the

DID of the governance framework, the DID of the certification authority, the DID of

the governed party being certified, and the DID URL of the precise type of

certification being awarded.

For additional recommendations about integration of the ToIP Governance Stack with the

ToIP Technology Stack, please see the ToIP Governance Architecture Specification V1.0

and the ToIP Governance Metamodel Specification V1.0.

13. References

NOTE: References in this first public review draft (PR1) are provided inline as hyperlinks.

In the second public review draft (PR20, they will be added as separate lists of

Normative and Informative References.

About the ToIP Foundation

https://trustoverip.org/permalink/ToIP-Governance-Architecture-Specification-V1.0-2022-12-21.pdf
https://trustoverip.org/permalink/ToIP-Governance-Metamodel-Specification-V1.0-2022-12-21.pdf

Founded in May 2020 with 27 original founding member organizations, the ToIP

Foundation has now grown to over 400 participating organizations plus over 100

additional individual participants. Our mission is to define an overall architecture for

Internet-scale digital trust that combines cryptographic assurance at the machine layers

(technology) with human accountability at the business, legal, and social layers

(governance).

For more information about ToIP Foundation, please read our Introduction to ToIP white

paper or visit our website at https://trustoverip.org/.

Appendix A: Consolidated
Requirements

For ease of reference, the following table consolidates all normative requirements in this

specification. Each requirement is linked to the section in which it appears.

Req

#
Description Section

General ToIP Architecture Requirements

A.1
Implementers SHOULD ensure autonomy for ToIP Endpoint

Systems.
7.1

A.2

In a ToIP Endpoint System, the higher layers of the ToIP protocol

stack MUST communicate with the lower layers via defined

interfaces.

7.1

A.3

A ToIP Intermediary System SHOULD be able to perform the

functions of a ToIP Endpoint System for the purpose of routing

enveloped messages using the ToIP Trust Spanning Protocol.

9

A.4
The ToIP protocol stack in an Endpoint System MAY use the

services of a Supporting System at any layer.
10.1

ToIP Layer 1 Requirements

L1.1

If a ToIP Endpoint System includes Trust Support Functions,

then those functions MUST be included at Layer 1 of the

Endpoint System.

7.2

ToIP Layer 2 Requirements

https://trustoverip.org/permalink/Introduction-to-ToIP-V2.0-2021-11-17.pdf
https://trustoverip.org/

Req

#
Description Section

L2.1
A ToIP Endpoint System MUST communicate with another ToIP

Endpoint System using the ToIP Trust Spanning Protocol.
7.3

L2.2
A ToIP identifier MUST be unique within the context in which it is

used for identification.
8.2

L2.3

A ToIP identifier MUST be a verifiable identifier, i.e., verifiably

bound to at least one set of cryptographic keys discoverable via

an associated discovery protocol.

8.2

L2.4

A ToIP identifier SHOULD be a decentralized identifier, i.e., a

verifiable identifier that does not require registration with a

centralized authority.

8.2

L2.5
A ToIP identifier SHOULD be an autonomous identifier, i.e., a

decentralized identifier that is self-certifying and fully portable.
8.2

L2.6
A ToIP identifier SHOULD support rotation of the associated

cryptographic keys for the lifetime of the identifier.
8.2

L2.7

A ToIP identifier MAY also support rotation to an entirely

different ToIP identifier that can be cryptographically verified to

be a synonym of the original ToIP identifier.

8.2

L2.8

A ToIP identifier SHOULD support the ability to: a) associate the

identifier with the network address of one or more ToIP Systems

that can deliver to one or more Endpoint Systems under the

locus of control of the ToIP identifier controller, and, b) if

desired by the controller, enable that association to be

discoverable.

8.2

L2.9

The ToIP Trust Spanning Protocol specification MUST define

how to construct and format messages that are

cryptographically verifiable to have the following four

properties: (1) Authenticity: the message was sent from a

sender who has control over the ToIP identifier. (2) Integrity: the

contents of the message transmitted by the sender are received

by the recipient without modification. (3) Confidentiality: the

contents of the message are only accessible by authorized

parties. (4) Privacy: the contents of the message are bound to

conditions of usage agreed to by the parties

8.3

Req

#
Description Section

L2.10
In a ToIP Endpoint System, an implementation of the ToIP Trust

Spanning Protocol MUST support authenticity and integrity.
8.3

L2.11
In a ToIP Endpoint System, an implementation of the ToIP Trust

Spanning Protocol MAY support confidentiality and privacy.
8.3

L2.12

The ToIP Trust Spanning Protocol MUST enable the composition

of higher-level Trust Task Protocols (such features as co-

protocols).

8.3

L2.13
The ToIP Trust Spanning Protocol MUST support extensible

message schema.
8.3

L2.14

The ToIP Trust Spanning Protocol MUST support resolution of

ToIP identifiers to: a) the network addresses of receiving

Endpoint Systems, and b) any required cryptographic keys.

8.4

L2.15
The ToIP Trust Spanning Protocol MUST support transport of

messages via ToIP Layer 1 interfaces.
8.4

L2.16

The ToIP Trust Spanning Protocol MUST support delivery of

messages to the Layer 2 interface of the Endpoint System of

the ultimate receiver of the message.

8.4

L2.17
The ToIP Trust Spanning Protocol MUST support delivery of

messages via Intermediary Systems.
8.4

L2.18
The ToIP Trust Spanning Protocol MUST support confidentiality

with regard to the metadata required for message routing.
8.4

ToIP Layer 3 Requirements

L3.1

A Layer 3 Trust Task Protocol MUST communicate either over

the Layer 2 ToIP Trust Spanning Protocol or over another Layer

3 Trust Task Protocol for all communications related to trust

establishment between Endpoint Systems.

7.4

L3.2

A Layer 3 Trust Task MAY use other protocols, but only for other

purposes (since short-circuiting Layer 2 when establishing trust

with other Endpoint Systems would undermine the trust

guarantees of the ToIP stack).

7.4

Req

#
Description Section

L3.3
A Layer 3 Trust Task Protocol intended to communicate private

data SHOULD support Confidentiality and Privacy.
7.4

ToIP Layer 4 Requirements

L4.1
Layer 4 Trust Applications MAY use any number of Layer 3 Trust

Task Protocols.
7.5

L4.2

If a Layer 4 Trust Application does not use a Layer 3 Trust Task

Protocol, it MUST communicate with other Endpoint Systems

using the Layer 3 Trust Spanning Protocol

7.5

L4.3
A Layer 4 Trust Application MUST support any ToIP-defined

Trust Affordances relevant to that application.
7.5

Appendix B: Consolidated Views of the
ToIP Technology Stack

The ToIP Technology Architecture Task Force has spent many hours discussing how to

produce consolidated views of ToIP architecture that are both relatively easy to

understand but still technically accurate. In the end, we agreed that no single diagram is

sufficient. Rather different views of the architecture should be taken together to see the

whole picture. In this appendix we present several of these views — and we invite

feedback on others that might be helpful.

Functional Hourglass View

Figure B1 is a view of the types of functions that belong at each layer within a single

Endpoint System as defined in this specification. It illustrates how the Hourglass Model is

implemented as a single trust spanning protocol at Layer 2, with multiple trust support

functions below and multiple supported trust task protocols above. It also shows one

example (at the far right) of a specific category of Supporting Systems, in this case

verifiable data registries (VDRs) upon which an Endpoint System can rely as external

sources of truth.

https://trustoverip.org/our-work/technical-architecture/

Figure B1: A layer-by-layer view of functions within an Endpoint System (also

showing verifiable data registries as one type of adjacent Supporting System)

Sphere-of-Influence View

Figure B2 builds on Figure B1 by identifying those technical capabilities that fall within

the purview of ToIP’s technical architecture and those that are outside that boundary and

thus do not need to be governed by ToIP component specifications.

http://localhost:6419/images/functional-hourglass-view.png
http://localhost:6419/images/sphere-of-influence-view.png

Figure B2: A view of the ToIP that shows what is inside and outside ToIP’s “sphere of

influence”

This view shows how the logical capabilities and components identified in the functional

hourglass view can align with dependent solutions that are not governed by the

requirements of the ToIP stack. For example, a DID resolver functioning at Layer 2 in an

Endpoint System may call a DID ledger functioning as a verifiable data registry. While the

DID resolver interface is a ToIP Layer 2 function, the DID ledger called by the associated

DID method is a Supporting System that has its own resolution protocol as defined by

the DID method.

Interaction Pattern View

Figure B3 builds on B1 and B2 by showing the interaction patterns between two different

Endpoint Systems as well as between an Endpoint System and a set of Supporting

Systems (on the far right).

Figure B3: A view showing the interaction patterns both within and between two

Endpoint Systems (as well as with Supporting Systems on the far right)

Appendix C: Mapping of Existing
Technologies into the ToIP Technology
Stack

http://localhost:6419/images/interaction-pattern-view.png

Just as the TCP/IP stack did not need to reinvent or replace existing local area networks,

but instead added a new inter-networking layer to connect the existing networks, the

ToIP stack does not reinvent or replace existing centralized or federated identity and PKI

trust infrastructures. It adds a new inter-trust networking layer to connect the existing

trust domains.

As this new layer of decentralized digital identity and trust infrastructure has been

evolving, many individual pieces of the puzzle have been developed in parallel. For

example:

Over 120 different DID methods (see the W3C DID Spec Registries).

At least a dozen different digital credential formats and signature schemes.

At least three digital credential exchange protocols (DIDComm/Aries, OIDC4VC,

W3C VC API)

Several new decentralized payment protocols (e.g., TBDex).

Multiple QR formats and out-of-band introduction (OOBI) protocols (e.g., OASIS

Secure QR Codes).

From a ToIP perspective, all of these are potential component specifications.

Some may fully meet the requirements of the ToIP Technology Architecture

Specification without any modification.

Others may require ToIP-conformant profiles to be written.

Still others may require (hopefully small) revisions to meet ToIP requirements.

A few (ideally very few) may need to be developed from scratch, either at the ToIP

Foundation or another suitable industry organization.

Given the speed at which this new evolutionary branch of the Internet is evolving, the

ToIP Foundation is maintaining a “mapping” of existing technologies and open standards

into the ToIP stack in a separate living document called Evolution of the ToIP Stack.

We highly recommend referring to this document to see the current mapping. The

Foundation intends to publish an updated version of this document with each major

development in the space (and no less frequently than twice a year).

1. With respect to this design goal, authenticity includes message integrity, i.e., a

communication is not authentic if it has been tampered with in any way. ↩

2. Another important property of the architecture is availability. This is a concern with

the design and implementation of operational deployments of the ToIP stack and

should be addressed in the associated operational governance frameworks. ↩

https://www.w3.org/TR/did-spec-registries/
https://tbdex.io/whitepaper.pdf
https://www.oasis-open.org/2022/07/12/secure-qr-code-authentication-v1-0-from-esat-tc-approved-as-a-committee-specification/
https://trustoverip.org/our-work/evolution-of-the-toip-stack/

